Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512116

RESUMO

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Nanopartículas de Magnetita , Materiais Biocompatíveis/química , Dióxido de Silício/química , Óxido Ferroso-Férrico , Calefação , Cerâmica/farmacologia , Cerâmica/química
2.
J Mater Chem B ; 11(31): 7502-7513, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458109

RESUMO

Magnetic bioactive glass-ceramic (MGC) powders with nominal compositions of (45 - x)SiO224.5CaO24.5Na2O6P2O5xFe2O3 (x = 2, 4, 6, 8, 10, and 15 wt%) have been synthesized by a sol-gel route by systematically substituting silicon dioxide with iron oxide in Hench's 45S5 glass composition. Powder X-ray diffraction studies revealed a variation in the percentage of combeite (Ca2Na2Si3O9), magnetite (Fe3O4), and hematite (Fe2O3) nanocrystalline phases in MGC powders as a function of composition. Zeta potential measurements showed that MGC containing up to 10 wt% iron oxide formed stable suspensions. The saturation magnetization and heat generation capacity of MGC fluids increased with an increase in iron oxide content. Degradation of MGC powders was investigated in phosphate buffered saline (PBS). The in vitro bioactivity of the MGC powders taken in pellet form was confirmed by observing the pH variation as well as hydroxyapatite layer (HAp) formation upon soaking in modified simulated body fluid. These studies showed a decrement in the overall bioactivity in samples with high iron oxide content due to the proportional decrease in the silanol group. Monitoring the proliferation of MG-63 osteoblast cells in Dulbecco's Modified Eagle Medium (DMEM) revealed that MGC with up to 10 wt% iron oxide exhibited acceptable viability. The systematic study revealed that the MGC with 10 wt% iron oxide exhibited optimal cell viability, magnetic properties and induction heating capacity, which were better than those of FluidMag-CT, which is used for hyperthermia treatment.


Assuntos
Cerâmica , Durapatita , Pós/química , Durapatita/química , Cerâmica/química
3.
J Environ Manage ; 304: 114242, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910995

RESUMO

Novel materials with low density are being synthesized with great interest owing to their effectiveness in water purification systems. Materials of micro/nano-scale provide outstanding results in miniature point-of-use devices because of their high surface-to-volume ratio. In this study, we report the successful synthesis of hollow polymethyl methacrylate microspheres (HPM) coated with functionalized carbon nanotubes (f-CNTs) (CHPM) by employing solvent evaporation and in situ coating techniques. The surface coating of HPM with the f-CNTs was visually confirmed by the surface roughness recorded in scanning electron microscopy. Furthermore, characterization with Fourier transform infrared spectroscopy substantiated the presence of hydroxyl and carboxyl groups of f-CNTs on the CHPM. The efficiency of CHPM to remove the turbidity from surface water was evaluated. The CHPM was effective in bringing down the turbidity of the water from 500 NTU to <1 NTU (>97%) which was within the desirable limit of the Bureau of Indian Standards. The temperature and pH for maximum reduction in turbidity were optimized to 49.5 °C and 4.5, respectively. Moreover, kinetic studies of CHPM indicated that the material followed the Langmuir isotherm model with regeneration efficiency lasting more than 10 cycles. From the results, we propose a simple, facile, and cost-effective synthetic route for the synthesis of CHPM for water purification, especially for turbidity removal. The synthesized CHPM with low density and relatively large surface area offer huge potential in water treatment applications and related fields.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Microesferas , Polimetil Metacrilato , Espectroscopia de Infravermelho com Transformada de Fourier
4.
ACS Omega ; 6(15): 10095-10105, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056164

RESUMO

Smart materials with potential pH controllability are gaining widespread concern due to their versatile applicability in water purification systems. A study presented here demonstrates a successful synthesis of smart pH-responsive polyaniline (PANI)-coated hollow polymethylmethacrylate microspheres (PHPMs) using a combination of solvent evaporation and in situ coating techniques. The material was characterized by using conventional techniques. Images recorded by an optical microscope displayed clear evidence in support of the coating, which was further supported by the SEM images. Surface roughness due to the coating was distinct in the SEM images. The PANI coating has enabled the microsphere to effectively neutralize the pH of water in water purification systems, which is very important in tackling the excessive acidic or basic problem of water resources. This study introduces a simple, facile, and cost-effective synthetic route to develop polyaniline-coated hollow polymethylmethacrylate microspheres with high performance as a pH-responsive material for water purification. The low density of the material and relatively large surface area compared to conventionally used chemicals further enhance the application prospect of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA